
Field fluctuations in bistable gas lasers

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1974 J. Phys. A: Math. Nucl. Gen. 7 1094

(http://iopscience.iop.org/0301-0015/7/9/012)

Download details:

IP Address: 171.66.16.87

The article was downloaded on 02/06/2010 at 04:59

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0301-0015/7/9
http://iopscience.iop.org/0301-0015
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A :  Math., Nucl. Gen., Vol. 7, No. 9. 1974. Printed in Great Britain, Q 1974 

Field fluctuations in bistable gas lasers 

Rainer Salomaa 
Research Institute for Theoretical Physics, Helsinki, Finland 

Received 15 October 1973 

Abstract. A phenomenological gaussian noise source is introduced into the semiclassical 
field equation of a single-mode gas laser with a saturable absorber. The behaviour of the 
slowly varying amplitude is determined by studying the Fokker-Planck equation of the 
gaussian random process. The stationary intensity distribution shows two maxima caused 
by the bistability of the laser system. The noise source induces transitions between the two 
stable operating points. The approximate lifetimes of the states are evaluated, and are shown 
to be extremely long in the low noise situation. The introduction of the absorber cell broadens 
the linewidth of the lasing line and enhances intensity fluctuations. The phenomenological 
parameter characterizing the noise source is evaluated by comparison to quantum theory. 
The results derived for an ordinary laser are in agreement with quantum-mechanical 
calculations. The simple model allows one to consider arbitrary intensities in an inhomo- 
geneously broadened single-mode gas laser system. 

1. Introduction 

An intra-cavity saturable absorber alters substantially the characteristics of a gas laser. 
Single-mode operation is preferred over wide ranges of the parameters (Beterov er a1 
197 1, Lee et al1968). The properties of the surviving mode differ considerably from those 
in an ordinary laser. One drastic example is the simultaneous occurrence of two stable 
operating points. In the bistable region the non-saturated absorption suffices to keep 
the total gain of the electromagnetic field below threshold over the whole bandwidth, 
but a large enough externally generated field is able to bleach the absorption so heavily 
that the laser begins to oscillate. Once the oscillating state is reached, it persists even if 
the external ignition field is switched off. The bistability of the laser operation gives 
rise to hysteresis phenomena (Lee er a1 1968, Lisitsyn and Chebotaev 1968). 

The above behaviour has been discussed theoretically in several papers (Kazantsev 
er al 1968, Greenstein 1972, Salomaa and Stenholm 1973). All these attack the problem 
within the framework of the semi-classical theory of gas lasers (Lamb 1964). Most 
of the steady-state characteristics can be calculated in this formulation, but, eg, it does 
not automatically describe the onset of oscillations. To follow the transient phenomena 
between the two operating points of a bistable gas laser, one must include external 
fields or intra-cavity noise sources. This paper concentrates on the effects of the latter 
ones. In addition to the improved description of the dynamics of the system, some new 
aspects of the steady-state behaviour can be extracted from this generalization, eg, a 
finite width of the lasing line (Lamb 1965). 

The model of the laser consists of an electromagnetic field coupled to an atomic 
system. Both the atoms and the field are assumed to interact with independent heat 
baths causing fluctuations and relaxation effects in the systems considered (Lax 1966, 
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Haken 1970). In the ordinary semi-classical theory the fluctuations are averaged out, 
and only the phenomenological decay terms remain. In this paper we shall retain the 
fluctuation force in the field equation, but neglect the random part in the matter equations. 
This simplification yields a numerically tractable model which is able to describe the 
transitions between the operating points of a bistable laser. 

The fluctuations due to spontaneous emission are present in a theory which uses a 
fully quantized model for the system (Haken 1970, Kazantsev and Surdutovich 1969, 
Lax 1966, Scully and Lamb 1967). Technical noise sources (cavity vibrations, collisions, 
discharge effects, etc) must, however, be treated with some approximate methods. In 
this paper we adopt from the beginning a phenomenological model for the field fluctua- 
tions. The parameters describing the noise source must be determined either phenomeno- 
logically by a fitting procedure or by extracting them from the quantum-theoretical 
results. We prefer to use the semi-classical theory because for single-mode operation 
the quantum theory is already quite complicated at high intensities. On the other hand, 
in the high-intensity region we can expect good results from the semi-classical treatment 
by which we also obtain the exact solution (Stenholm and Lamb 1969). 

Klimontovich et a1 (1972) have considered the fluctuations in ordinary gas laser 
systems with a generalized semi-classical model which takes into account both the field 
and polarization fluctuations. The extension of their results to the case of a laser with 
an intra-cavity absorber would be straightforward, but because of the mathematical 
complications we shall be content with a simpler model. Kazantsev and Surdutovich 
(1 970) have considered the bistable laser quantum mechanically within nonlinear 
perturbation theory. Because the absorber is assumed to be heavily saturated, we cannot 
use their results, except near threshold, and secondly we discuss the inhomogeneously 
broadened case which is the most common situation in gas lasers. Qualitatively our 
results will show excellent agreement with theirs and this fact is taken to prove that our 
simplified model does not exclude any essential physical feature of the system. 

We introduce a Langevin equation for the field and give the corresponding Fokker- 
Planck equation in $2 .  The Fokker-Planck equation is reduced to two associated 
Langevin equations one of which depends only on the intensity of the field, and the other 
one describes the phase fluctuations. The steady-state intensity distribution is solved 
in $ 3. In the same section we give an estimate for the linewidth of the oscillating mode. 
In $ 4 we study some dynamical problems connected with a bistable laser system, and 
show that in the low noise limit the two operating points are metastable and have very 
long lifetimes. A brief discussion on the assumed single-mode stability is given in $ 5. 

2. Amplitude and phase equations 

The cavity fluctuations due to thermal and technical noise sources are taken into account 
by the introduction of a random force F ( t )  into the classical equation of motion (Salomaa 
and Stenholm 1973) for the slowly varying field amplitude 

-E = - I X ( E  E * ) - -  E + F ( t ) .  
i t  ;( * ’ A) 

We prefer the use of a complex amplitude E to its separation into the modulus and 
phase variables. The laser is assumed to oscillate in a single mode. This case allows an 
exact semi-classical solution for the nonlinear susceptibility (Stenholm and Lamb 
1969). 
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We deduce the stochastic properties of the complex fluctuating force F ( t )  from the 
quantum-mechanical analogues. According to Haken (1970) (see also Lax 1966, 
Paul 1969, or Risken 1970) we can assume F ( t )  to be approximately gaussian. The only 
non-vanishing correlation function is 

(F(t)F*(t’))  = K 6 ( t -  t‘) .  (2) 

Since all the variables in equation (1) are c numbers it suffices to know the single intensi 
coefficient K .  In contradistinction to quantum-mechanical calculations we obtain 
the same value for both ( F F * )  and ( F * F ) .  We also recall that the loss rate n/Q is 
related to the intensity coefficient K (see, eg, Haken 1970). Here we shall, however, 
regard K as an independent parameter. This is justified because we are mainly interested 
in the physical effects arising from the presence of the fluctuating force, and not in their 
exact numerical determination from first principles. One can also hope that part of the 
polarization fluctuations will be taken into account by the phenomenological para- 
meter K .  Klimontovich et al (1972) show that such a generalization makes K also 
depend on the field intensity. As this would again cause additional mathematical diffi- 
culties we will neglect it. 

The Fokker-Planck equation (Lax 1966, Stratonovich 1967) corresponding to the 
Langevin equation (1) is 

P+cc, 
ap a n  K a 2  

at 
- = 

ix-k)EP] +-- 2 aEaE* (3) 

where P(E, E*, t )  is the probability of finding the values E and E* at the time t .  As we 
assumed a gaussian fluctuating force the equations (1) and (3) contain an equal amount 
of information. 

Introducing the new dimensionless variables I and t 

Qr 
R ’  

t = -  

we obtain from (3) 

_ -  at a i  
where 

G(1) = - QIm(x(1)) - 1. ( 8 )  

(We have adopted our notation from Salomaa and Stenholm 1973 ; yo  and y b  are the 
diagonal relaxation rates of the two-level atom and p the dipole matrix element.) 
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The nonlinear susceptibility x is in single-mode operation independent of the phase 
4 (see, eg, Stenholm 1971). This fact enables us to write down the Langevin equations 

d l  D 
- = G(I)I + ~ + ( 2 D 1 ) ” 2 t ( t ) ,  
d t  

d 4  Q - = --R~(x(I))+ - ~ ( 7 1 ,  
d t  2 (fi) l i 2  

(9) 

which are stochastically equivalent to the Fokker-Planck equation (6), if the new real 
fluctuation forces t(t) and ~ ( t )  have zero average values and satisfy : 

( 1  1 )  

(The equivalency of (1) to (9) and (10) is due to the fact that both lead to the same Fokker- 
Planck equation, which is unique ; see Stratonovich 1967). 

The new Langevin equation (9) is independent of the phase 4, and hence we can 
solve the statistics of the intensity I by it or by the corresponding Fokker-Planck 
equation 

( t ( T ) t ( t ’ ) )  = < V ( M t ’ ) )  = 6(; - 5’1, ( t ( t ) V ( T ’ ) )  = 0. 

where w(1, t) is the probability distribution of the intensity I .  Once we know the Green 
function of (12), all the expectation values of functions depending on I and t can be 
evaluated. 

In the phase equation (lo), the intensity fluctuates slowly compared to the function 
~ ( 7 ) .  Introducing the phase variable 

Q, = 4(t)  - +(t’) (13) 

we can write down the probability distribution of @ for a fixed realization of I(T): 

(for a proof see Chandrasekhar 1943). We emphasize that the Green function (14) is 
random because of the randomness of I(r). In principle the intensity fluctuations can 
be averaged out with the aid of the Green function of the Fokker-Planck equation (12). 
However, the evaluation of the integrals in( 14) involves infinite order multi-time averages 
of I(t) which makes the calculations extremely complicated. 

In the following section we shall study the stationary intensity distribution and 
determine the linewidth of the field in the case when the intensity fluctuations can be 
neglected. 

3. Steady-state characteristics 

3.1. Intensity distribution 

The true stationary distribution is obtained from (12) by requiring the probability 
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current to vanish. Thus we have 

I D--G(I)w = 0 ( E  ) 
which has the solution 

W(I) = wo exp( A s G(I )  dI)  = wo e”“’. 

The constant wo is fixed by the normalization of w(Z). 
For a resonantly tuned mode we employ the expression 

G(I )  = ~ V ( l + l ) - ~ ’ ~ - M ( l + ~ I ) - ~ ’ ~ - l  

for the gain function (see, eg, Beterov et al 1971). This is the rate equation approximation 
(REA) result in the Doppler limit (ie, the Doppler width is much larger than the power 
broadened homogeneous width), and it can be shown to be accurate enough for our 
purposes (Salomaa and Stenholm 1973). The quantities J1’ and A describe the pumping 
rates of the amplifier and absorber cell, respectively, and a is the relative saturability 
of the two active media. Here we always take a > 1. The choice of a resonantly tuned 
situation is immaterial for the physics of the system. The exact gain function with arbit- 
rary detuning and intensity can be evaluated, but because of the unnecessary additional 
mathematical complications we discuss (17) only. It can also be shown that the reson- 
antly tuned laser exhibits all the qualitative features of interest here. 

Inserting (17) into (16) we get 

Kazantsev and Surdutovich (1970) have derived a similar stationary intensity distribu- 
tion for a homogeneously broadened laser in the limit a1 << 1. 

The extreme values of (16) occur either at the zeros of G(I )  or at I = 0. These points 
correspond to the steady-state operating points predicted by ignoring the noise (cf 
equation (9) for D = 0). The type of operation of the laser system is classified according 
to the number of zeros of G(I). 

We have displayed the steady-state intensity distribution (18) in figure 1 for different 
values of ,X keeping .N fixed. In the monostable region (the small-signal gain is above 
threshold, ie G(0) > 0) the gain function has a single zero, and accordingly w(f) one 
maximum. Increasing the pumping current of the absorption cell, the laser is driven 
into the bistable region (in figure 1 A > 0.5). The small-signal gain is now below 
threshold but a large enough field can bleach the absorption and consequently the 
laser becomes able to oscillate. The gain function G(I)  thus has two zeros and also taking 
into account the point I = 0 we get three extreme values for w(I). The two maxima 
correspond to the stable oscillating and non-oscillating solutions and the minimum 
to the unstable zero-gain point. A large enough absorption can completely prevent the 
laser from oscillating. In this case a single maximum occurs at Z = 0, and w(1) represents 
the amplified noise spectrum. 

The moments ofthe intensity I can be calculated with the aid of the Laplace transform 
of w(1) : 

( I k )  = (- I)k[E soa d l  e-S‘ w(I)] . 
a s k  s = o  
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I 
0 0 5  I O  1.5 

Z 
Figure 1. Semi-logarithmic plot of the stationary intensity distribution for various absorption 
cell pumping rates d. The amplifier pumping rate M. = 1.5. relative saturability rz = 10 and 
the diffusion coefficient D = 0.01, 

For a resonantly tuned ordinary laser (A = 0) the Laplace transform of (18) yields 

exp( ( s D + l - N ) ’  D(sD+l) )er.( [D(sD+ s D + l - N ) ]  1)]1/* . (20) 

Evaluating the first two derivatives of (20) and exploiting the normalization condition 
w(s = 0) = 1, we find 

(21) 

(22) 

M E ( I )  = [ D * + N D ( ~ + N ) + ( J V ~ - ~ + $ D ) A ] ( D + A ) - ~ ,  

R E ( ( I  - M)’)  = ID4 - ND2[(N + 1)’ -4D(3 + 5N)] - A D [ N 3  + Nz(  1 - 4  D) 
- N ( l  + i D ) - y D ’  + D- 13 + A 2 D ( 2 N 2  + $ D ) } ( D + A ) - ’ ,  

where 
A = N , / s e x p (  ( N  - 1)2 ) erfc( -). 1 - N  

f l  
In the limit D -, 0 the function A vanishes, if N < 1, and approaches infinity if N > 1 .  
Carrying out the expansions of M and R to lowest order in D, we obtain 

D(l --A’-)-’ N < l  

N2 - 1 +$D 
N = l  (24) 
N >  1 

D’(1 - N ) - 2  N < 1  

N = 1  

N >  1 .  

We have illustrated the behaviour of M and R in figures 2 and 3. 
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L I 
0 05 to 1.5 

N 

Figure 2. Average intensity of an ordinary resonantly 
tuned laser plotted against pumping of the cell at 
various noise levels. 

Figure 3. Relative variance corresponding to figure 2. 

The comparison of the second central moment (22) to quantum-mechanical calcula- 
tions enables us to give an estimate to D. Riska and Stenholm (1970) consider fluctuations 
arising from spontaneous emission, and derive the approximate result : 

for a laser well above threshold ( N  > 1). Evaluating the ratio R / M Z  by (24) and (25) and 
thereafter making it equal to (26), we find 

With the values f i  = 1.6 x m3, yo = Yb = lo7 Hz, i-2 = lOI5 Hz 
we obtain D - lo-?.  

The above order of magnitude estimate for D and equations (24)-(25) show that the 
fluctuations are important only very near threshold (IN- 11 - D). In the region well 
above threshold equation (24) reproduces the ordinary semi-classical steady-state 
intensity (see, eg, Stenholm 1971). The only difference is the additional noise contribu- 
tion fD. 

With a finite absorption (A’ > 0) we have not succeeded in expressing the Laplace 
transform (19) in terms of elementary functions. A straightforward numerical integration 
also leads to difficulties since the exponent overflows easily for small values of D. In 
the limit D + 0 we can, however, evaluate the moments of the intensity I by the method 
of steepest descent. 

In the monostable region w(Z) has a single sharp maximum at I = I , ,  in the vicinity 
of which we utilize the approximation 

Cm, V = 

w ( I )  = wo exp[a - + ~ ( I - z , ) ~ ] ,  (28) 
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where according to (16)-( 18) 

The position of the maximum occurs at the zero of G(I). The value of b must be positive 
which agrees with the ordinary stability criterion for the operating point (see, eg, 
Salomaa and Stenholm 1973). 

For small values of D the most important contributions to the moments of the 
intensity come from the region where the approximate distribution (28) is valid. For 
the average intensity M and the variance R we find 

M = 1 , + ( 2 ~ b ) - ' ~ ~  exp(-ibl:) = I , ,  

R = -- M(2nb)-"' exp( -3bZ:) N -. 

(31) 

(32) 
1 1 
b b 

When evaluating (31) and (32), we have performed the integration from - CO to + x 
because the small tail of (28) below I = 0 is negligible. 

In the bistable region we have to take into account also the maximum of w(Z) at 
I = 0. If the two peaks are clearly distinct we can write 

w(Z) = w , , { e x p ( ( - ~ Z ) + e x p [ a - f b ( Z - Z , ) 2 ] ) ,  (33) 

= U(0)  = z( D d), 
1 1 
D D r = --G(o) =++.AGM). 

(34) 

(35) 

(note that the normalization constant wo is different in (28) and (33)). The validity of 
the approximation (33) requires : 

which two inequalities guarantee a negligible overlap of the two peaks. 
A simple calculation yields for M and R in the bistable region the estimates 

(terms of the order exp( -$bZ$) have been dropped as in (31) and (32)). 
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In the non-oscillating region (A suffices to extinguish oscillations for all I )  the 
stationary intensity distribution (18) is approximated by 

~ ( l )  N w,, exp([ - rI), (39) 

M = D ( l + A - N ) - ' ,  (40) 

R = D2(1 (41) 

from which we obtain by (35) 

We have plotted in figures 4 and 5 some numerically calculated curves for M and R 
in the region where the above approximate methods do not work accurately enough. 

I I I 1 
0 0.5 I O  1.5 

M 
0 05 1.0 1.5 

M 
Figure 4. Average intensity of a laser with a saturable 
absorber plotted against absorption cell pumping 
rate A at various noise leveis(N = 1.5 and a = 26.0). 
Bistable operation begins at A = 0.5 and oscilla- 
tion is extinguished at the A indicated by the sudden 
drop in the curve D = 0. The arrow indicates the 
value at which the two maxima in the intensity 
distribution have equal height. 

Figure 5. Relative variance corresponding to figure 4. 

As a general feature we observe that the introduction of the absorber cell into the laser 
cavity tends, on the one hand, to diminish the average intensity and, on the other hand, 
broaden the intensity spectrum. The latter property is caused by two effects. One 
is that the spectrum may acquire two maxima and the other is that in the vicinity of 
the operating points fluctuations are enhanced more strongly when the absorber is 
present. From (30) and (32) we notice that the width of the intensity spectrum at the 
oscillating operating point is determined by the factor - (G(Z2) ) - '  which is smaller 
for an ordinary laser than for a laser with a saturable absorber. 

Another interesting feature is that we always get a uniquely determined M also in 
the bistable region and even in the limit D -, 0. This stationary behaviour in the low 
noise limit is in contradiction with the results obtained by a theory which neglects 
noise. The latter predicts two stable operating points whereas from equation (37) we 
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see that in the limit D + 0 we obtain M = 0 for a < ( and M = I ,  for a > (. Going 
back to the expressions (29) and (34), and eliminating Jy by the equation G(I)  = 0, 
we find that if A, for a fixed intensity I of the oscillating operating point, exceeds the 
value 

the peak at I = 0 dominates so strongly that the system becomes monostable and has 
M = 0. In the opposite case (A < ATR) the oscillating operating point has such a 
large weight that we obtain M = I .  Note that for all D the value ATR is the absorption 
at which the two maximum values of the stationary intensity distribution are the same. 

The values A T R  can be plotted in the ( N ,  A) plane using I as a free parameter 
and we see that the curve (42) falls in the bistable region between the border lines of the 
monostable and non-oscillating regions (figure 6). 

M 

Figure 6. Type of operation of the laser system (a = 26). F N t NBs we obtain mono- 
stable behaviour and for N < .VNo the oscillating state disappears. At NTR the two maxima 
in the intensity distribution have equal height. 

A comparison of (42) to the analytic expressions of the border lines (Salomaa and 
Stenholm 1973) yields 

-- (44) 1 +uz 

(if A < ABS the gain function G(I )  has a single zero and if A > ANo the total gain is 
below threshold for all I ) .  

The above result (the same feature is found by Kazantsev and Surdutovich 1970) 
that the bistability disappears in the true steady state does not, however, remove the 
hysteresis phenomena from the system. In 44.1 we shall show that in the low-noise 
limit the transit times from one operating point to another become extremely long. 
This holds even for the case when the system is initially prepared to an operating point 
which has a negligible weight in the true stationary intensity distribution. Qualitatively 
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it is easy to understand the long transit times with the aid of equation (9). For Z = 0 
and for small D the intensity grows slowly until it reaches a value comparable to the 
noise term iD. Then the negative G tends to damp the intensity and only a very rare 
realization of <(t) is able to push the system above threshold. The two operating points 
are, therefore, metastable with such large lifetimes that the bistability is practically 
preserved. 

3.2. The linewidth of the laser 

In this section we calculate the linewidth of the field in a stationary state. If the system 
operates in the bistable region we assume that it stays at one of its metastable operating 
points, ignoring the possibility of a transition from one operating point to another. 

The spectral density S ( 0 )  of the slowly varying amplitude is determined by the 
formula (Stratonovich 1967) : 

where we have already introduced the dimensionless variables Z and s defined in (4) 
and (5). To calculate the expectation value in (45) we have to know the Green function 
9 ( Z ,  4 , s ;  Z‘, +’, 0) of the Fokker-Planck equation ( 6 ) :  

( ) = lom d l  Iom dl‘ d+ s_’ a, d 4 ’ n  exp[ i (4 - +’)]Y(Z, 4, T ; Z‘, 4’, O)P(Z’, 4’)  
m 

(46) 
for T > 0 (for T < 0 we must interchange 4 and 4’). P(Z‘, 4‘)  is the initial distribution. 
The phase 4 is defined from - CO to + 00 instead of the normal range from 0 to 27c by 
periodically continuing the latter one. 

In the following we neglect the intensity fluctuations near the oscillating point I , .  
This can be justified by linearizing the Langevin equation (9) at Z = I , ,  and noticing 
that the intensity fluctuations decay within a time ( -  G ( Z 2 ) Z 2 ) -  which is extremely 
short compared to the diffusion time 1/D in the equation (14), provided that G ( Z 2 )  
does not vanish. Thus we can write 

for times T large compared to the correlation time of the intensity fluctuations. In 
deriving (47) we can replace Z(x) by I ,  in the integrals of the equation (14), because the 
corrections are of the order D. 

For the initial distribution we take 

P(Z’, 4’) = 6(4’)w(Z’). (48) 

Since we neglect the possibility of transitions between the operating points and the small 
corrections arising from the replacement of 1 and I’ in (46) by 1, we can use for the 
intensity distribution w(1) the approximate form 6(Z - Z,). Inserting (47) and (48) into 
(46) and performing the Fourier transform we obtain 

A 
(o+ iRRe  x(Z2))’+A2’ 

S ( 0 )  = 2p1, (49) 



Fieldjuctuations in bistable gas lasers 1105 

where the linewidth of the lorentzian is 

SID A = -  
4Q12 * 

The shift of the centre frequency is due to the frequency-pulling effect caused by the 
dispersion of the optically active media. 

The derived linewidth (50) agrees with Lamb (1965), if we use for D the expression 

obtainable with the aid of the Callen-Welton theorem (see Klimontovich er a1 1972). 
In (51) ii is the average number of photons in the empty cavity and it can be ignored if 
AR >> kT Inserting (51) into (50), we obtain one half of the quantum-theoretical value 
(Scully and Lamb 1967). As we previously pointed out, the fluctuations are not entirely 
caused by thermal noise in the cavity. Spontaneous emission also contributes. Equation 
(27) predicts for D a value which is one and a half times the value given by the Callen- 
Welton theorem. 

Because of this ambiguity of numerical factors we prefer to continue to keep D 
as a free adjustable parameter. Equation (50) offers one possibility to fix its value 
phenomenologically. Since the line of an oscillating laser is generally much narrower 
than the cavity linewidth n/Q we get an extremely small value of D when I ,  is of the order 
one. 

This calculation shows that the bistable laser gives the same linewidth as an ordinary 
laser, except that the steady-state intensity has a diminished value. The essential approxi- 
mation in the derivation is the assumed long lifetime of the oscillating state. This 
requires that the escape rate from the oscillating state is much smaller than the phase 
diffusion rate D/41,  (cf 6 4.1). 

4. Transient phenomena 

4.1. Escape rates 

This section is devoted to a semi-quantitative study on the temporal behaviour of a 
bistable laser. In order to describe the dynamics of the system, we must solve the time- 
dependent Fokker-Planck equation (6) with the desired initial conditions. If the 
system is prepared to the non-oscillating operating point, it is interesting to know how 
long it takes to reach the true stationary distribution. For this question it is sufficient 
to solve equation (12) only, and thus we are allowed to ignore phase fluctuations. 

According to Stratonovich (1967), the complete solution of (12) is given by 

where the functions w, are the eigensolutions of the equation 

D I w ~ ~  + (D - IG)wi, + (E, ,  - G - IG’)w,* = 0 (53) 

with the eigenvalues E, .  The eigenfunction wo is the true stationary distribution (18) 
corresponding to the eigenvalue Eo = 0. In our case G(1) is a highly nonlinear function, 
which fact makes the solving of (53) extremely laborious. 
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The exact solution of the Fokker-Planck equation (12) is tractable only numerically 
for arbitrary pumping rates A’” and A. To avoid the cumbersome computation process 
we try some approximate analytic methods. Extensive numerical calculations have 
been performed for a linearized gain function (see, eg, the review article by Lax and 
Zwanziger 1973 and references therein). In our case we should take into account also 
the quadratic terms. Kazantsev and Surdutovich (1970) have pointed out the similarity 
of the bistable laser to a brownian particle escaping over a potential barrier which has 
been discussed by Chandrasekhar (1943). In the following we derive the escape rates 
from the metastable operating points in a modified fashion and give conditions under 
which the results can be used. 

We have solved the Green function of equation (12) in three different regions by 
linearizing the product G(I)I (appendix 1). Near the origin, we obtain (A.9) 

Y(I, 7 ; 0,O) = Go exp( - ~ ( 1  
D(l -e-GoT) (54) 

where Go = -G(O). This shows that local equilibrium is reached within a time G;’, 
For small values of D, (54) describes accurately the behaviour of w(I, t) in the region 
where the quantity 

( 5 5 )  - I (G(I )  - G(0))Y’ - (G(I )  - G(0) + IG‘(I))B 

is negligible (see (12)). 
By linearizing G(Z)I at the unstable operating point I, we get (A.14) 

The unstability follows from the positive value of g ,  . If a realization I ( z )  at time z = 0 
takes the value I,, it is extremely improbable to find it near I, in a region of width 
2DI,/g, after a time l /g, ,  unless 

201, ‘I2 
1 ~ 0 - ~ 1 1  +-) 

We see that in the limit D + 0 almost all realizations of I (? )  are reflected back towards 
the initial value I(0). 

The third approximate Green function (A.16) is given in the vicinity of the stable 
operating point I, : 

Formula (59) reveals the relevant decay rate g2 = -Z2G’(12).  The approximate Green 
functions (54) and (59) show that local equilibrium is reached within times l /Go and 
l/g, (real time units are obtained by multiplying these by the cavity decay time Q / Q .  
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Integrating (12) from 0 to I ,  we get 

which is the rate at which the probability of finding a realization I(t) < I decreases. 
The formal solution of (60) is given by 

For small values of D, only a negligible amount of probability can be accumulated in the 
vicinity of the unstable operating point I = I ,  (cf equation (56)), and therefore, j (1, t )  
does not vary violently in that region. On the other hand, ( ~ ( 1 ) ) -  is very sharply peaked 
at I = I ,  and the right-hand side of (61) can be evaluated by the method of steepest 
descent. We obtain : 

- - j ( t )R  

where 

R=---  1 ( 2 ~ D ) l / ~ {  erf [ (I, -1') (A -G'(I,) ) 1 / 2 ]  +erf [ (1"-11) (A -G'(Z,) )"'I} 1 

201, W U , )  G'UJ 
9 

(63) 

and the assumedly weak dependence on I has been omitted in j(1,t). 
The approximate solution of the Fokker-Planck equation (12) is given by a com- 

bination of (54), (59) and (62). After a time l /Go (or 1/g2) has passed, we can assume 

The transfer of probability from one region to another in the initial transient from the 
6 function distribution to the local equilibrium is negligible if the stationary peaks are 
clearly distinct, and thus Cl(0) and C2(0) can be determined to satisfy the initial prepara- 
tion of the system. The solution (64) is taken to be valid for all t which restricts our 
considerations to changes which take place slowly compared to l /Go or l/g2. We choose 
I' and I" in (62), (63) in such a manner that (64) approximately holds. 

Inserting (64) into (62) we obtain 

C2-C, = - jR.  (65) 

The total probability must be conserved, and because in the region (l ' ,  I") only a negli- 
gible amount of probability can be accumulated, we get : 

C,P,+C2P, = 1, 

P ,  = 1 -P2 = Jar' w(1)dl. 
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The assumption that j ( Z ,  r )  is independent of I near I implies that the probability escaping 
from the region I < I'  must arrive in the region I 2 I",  ie, 

C,P,  = -C,P, = - j .  (68) 

C , ( r )  = C,(0)e-Y02'+(1 -e-Y02T), (69) 

The set of equations (65), (66) and (68) is easily solved and we find 

Ifthe system is initially prepared to the non-oscillating operating point, we have C2(0) = 0 
and from (66) C,(O) = l/Pl. By (68), (69) and (71) we obtain 

yo25 << 1. 
1 

30+2  1: - P,R' 

For a system initially prepared at Z 2 ,  we find 

Because of the initial preparation of the system, equations (72) and (73) describe the rate 
at which realizations escape from one metastable state to the final state, since for times 
T << y0;l  we can neglect the backflow. 

For small values of D the error functions in (63) both equal approximately one. 
Calculating the weights P, and P2 by the method of steepest descent (cf 9 4.1) we obtain 
from (63), (72) and (73) 

In the low-noise limit, D -+ 0, the escape rates behave as exp( - 2 / D )  since U ( I , )  < U(O), 
U(Z2). Their vanishing implies that the system stays infinitely at the point where it is 
initially prepared. This proves the statement that in the low-noise limit the operating 
points are metastable. The results (74) and (75) are illustrated in figure 7. 

The formula (61) is exact. The essential approximations are done in (64). The as- 
sumption of local equilibrium requires that the net flow out of a stable region in a 
characteristic time, needed to achieve local stationarity, should be small compared to 
the net probability in that region. For example, if the system is initially prepared to the 
point I = 0, the following inequality must be satisfied 

1 
-jO,, << 1. 
Go 

Inserting (74) into (76) and assuming the linearized form of G ( I )  to be valid for I < I 
find 

we 
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I I I I 1 I 

Figure 7. Inverse lifetimes in units of Q/Q of the metastable states of a bistable laser plotted 
against the absorption cell pumping rate A (.Y = 1.5 and a = 26). For the applicability 
of the drawn curves see the text (the left-hand side of (80) is - at A = 0.6). 

where 
- Go + G’(I ,)I 1 = 0. 

Utilizing (78) to eliminate I , ,  and determining the point at which the left-hand side of 
(77)  acquires its maximum, we get the condition 

Neglecting the difference between G’(I ,) and G’(O), we obtain from ( 1  7) and (79) 

J2U +A--), > D.  
cid-.Af 

If the small-signal gain is very near threshold, and the relative saturability ci >> 1 ,  this 
condition gives a small upper bound to D, indicating that noise can relatively easily 
set on the oscillations. In a similar manner one can show that the condition 

must be satisfied when the system is initially at 1 2 .  Inserting (75)  and the value 
g, = - 1 2 G ( 1 2 )  into (81), we find 

”.( 27c I ,  - m ) ” ’ e x p (  G’(12)  - k c G ( I ) d I )  << 1, 

where the U ( I )  functions have been expressed with the aid of (16). In the limit I, -, I,, 
G ( I )  can be approximated by a parabola, and we see that (82) holds for 

@ 2 - 4 ) G m a x  > D. (83) 
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If the absorption is large enough the laser operates near the extinction region ( I ,  = Z 2 )  
and small fluctuations can shut off the oscillation. 

To  clarify the physical meaning of the above considerations we assume that the system 
is initially prepared near I = 0 and neglect all the realizations of I(t) which have a larger 
value than I , .  Setting C2 0, we obtain from (65)  and (68) 

1 

(note that because all the escaped realizations are neglected we do not have to satisfy 
(66)). At time 7Jdz realizations escape. The average lifetime of the metastable state 
I = 0 is thus 

To = som d t  j(t)t = P,R. 

In a similar manner one can show that the lifetime of the metastable state I ,  equals 

T2 = P2R. (86) 
The possibility of escaping from the oscillating operating point increases the width 

of the lasing line. This is approximately taken into account by multiplying the Green 
function (47) by a factor exp( - t/T2) (cf equation (84)). Redoing the calculations of 6 3.2, 
we find for the linewidth 

In the low-noise limit 1/T2 behaves as exp( - e2/D), and the last term in (87) can be ne- 
glected in comparison to the phase diffusion term. 

4.2. Dynamics of the expectation values 

Another way to investigate the dynamical behaviour of the system is to study the equa- 
tions of motion 01 the expectation values. Multiplying (12) by an arbitrary function 
f ( Z )  and integrating by parts we find 

a a 
- ( f )  at = D ( I f ” + f ‘ ) + ( I G f ’ ) + ~  0 I [ f (D-G)w’ - f ’Dw] .  (88) 

In the following we consider only such functions for which the last term vanishes. 

the equations 
For the average value M = ( I )  and the variance R = ( I 2 )  - M 2  we obtain from (88) 

a 
at -M = D+(ZG) ,  

a 
-R at = 2 D M + 2 ( 1 2 G ) - 2 M ( I G ) .  (90) 

The distribution w(Z, t) is completely characterized by its moments. Writing the equa- 
tions of motion for all the moments (or combinations of these, eg, cumulants or central 
moments) and expressing the expectation values (ZkG(Z)) in terms of these we obtain an 
infinite set of coupled equations which determine the temporal behaviour of the system. 
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In the following we assume R to be small and the higher central moments to vanish. 
Expanding G in powers of ( I  - M )  we find from (89) and (90) a closed set of equations 

(91) 

(92) 

If the system is initially prepared so that w(I ,  0) = h ( I -  MO), we see that for small values 
of D the distribution moves rapidly to  one of the operating points, provided that 

a 
aT 
a 

- M = D + M G ( M )  + R(G’(M)+iMG”(M)), 

- R = 2DM + 2R(G(M) + MG’(M)). 
a T  

D << IMOG(M0)I. (93) 

During this transient the distribution broadens only slightly. This supports the assump- 
tions made in 4 4.1 on local equilibrium. 

We consider only the situation where the system is initially prepared to I = 0. 
As long as the distribution is confined to  I 5 I we can approximate 

G(I)  = -Go+G,Z. (94) 

Inserting this into (91) and (92), we obtain the steady-state solutions 

M = 2D[Go +(G$ -8DG1)’”I- ’, 
R = 4D2[Go+(Gi-8DGl)’12]-2. 

(95) 

(96) 

(In fact we get three solutions but one of these has negative R and one can be excluded by 
stability considerations.) From (95) we see that M becomes imaginary for 

G i  ( l + A - M ) ’  D > - =  
8G, 4 ( a A - M )  (97) 

As the linearization (94) still can be expected to be relatively good the result evidently 
indicates that noise is able to remove the system to the oscillating operating point. Com- 
parison of (97) to (80) further supports this argument. If we neglect R totally in (91) we 
find that aM/at  is positive in the linearized region (94) if D exceeds twice the value given 
in (97). 

We do not integrate the equations (91) or (92) numerically in this paper. However. 
we point out their usefulness in evaluating steady-state properties. For example, we see 
from (92) that for the system at M = I , ,  the steady-state variance R is given by 

Near the extinction border ( G ( M )  = 0) the fluctuations are enhanced greatly. Similarly 
one sees that for a system, prepared to I = 0, we have from (92) 

The two metastable operating points have a different nature. The non-oscillating region 
is bound both from below and above (0 < I < I ’) whereas the oscillating operating point 
has only a lower limit (I > Il). This fact tends to make the oscillating state more 
stable against fluctuations, if G’(12) and Go are of the same order (cf figure 7), and is 
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clearly demonstrated if we calculate the steady state M and R by (90) and (91) for a 
linearized gain function 

G = -G’ ( I* ) (M- I* ) .  (100) 

The steady-state average intensity turns out to be I ,  and the variance is given by (98) 
for M = I , .  The linearized gain function (100) always yields a stable solution. In- 
stabilities can be expected only in the region where the linearization (100) breaks down. 

5. Discussion 

We have introduced a phenomenological gaussian random force into the equation of 
motion of the slowly varying mode amplitude. The results obtained for an ordinary 
laser are in satisfactory agreement with calculations based on fully quantized models. 
Kazantsev and Surdutovich (1970) present a Fokker-Planck equation equivalent to 
equation (6), except that we have ignored the intensity dependence of the diffusion 
coefficient D. This simplification does not exclude any physical feature of the system, 
and by extracting D from experimental data we are able to take into account all noise 
sources in an approximate way. In the low-noise limit a weak intensity dependence 
could be included in D by letting it have a different value at the oscillating and non- 
oscillating operating points. For small values of D the two metastable states have long 
enough lifetimes to allow experimental determination of stationary operating character- 
istics. To a first approximation the technical noise sources do not depend on whether the 
bistable laser oscillates or not, because the pumping currents and the pressures of the 
two cells are kept constant. Measuring the value of D at the oscillating and non-oscil- 
lating operating points yields information on the saturation properties of the quantum- 
mechanical noise sources (cf Klimontovich er a1 1972, Kazantsev and Surdutovich 
1969). 

In this paper the noise source is assumed to be gaussian. This requires that a field 
fluctuation and its polarization response have a much shorter correlation time than the 
intensity correlation time. Such a situation occurs for yQ/Q >> 1 (see, eg, Haken 1970). 
The high relative saturability of the two cells is obtained, if we have 

In case the dipole matrix elements are equal, eg, in a He-Ne amplifier and Ne absorber, 
equation (101) is satisfied for yamp > Yabsr which holds if the absorber cell is at a lower 
pressure than the amplifier cell (see, eg, Lee et a1 1968). The homogeneous width Yabs 

may turn out to be of the same order as the cavity linewidth Q/Q, but the restriction 
yQ/Q >> 1 can be shown to be too strong (Lax and Zwanziger 1973). 

We have considered single-mode operation and neglected the radial dependence of 
the field. The higher transverse modes are excluded because of $eir assumedly small 
Q values (to satisfy this some special arrangements in the experimental set up may 
be needed). However, one must remember that the higher transverse modes may play a 
role in the dynamical behaviour of the system (Lax er a1 1972). Focusing (or defocusing) 
of the beam can be approximately included in the parameter U, but replacing I in G ( I )  
by a radial average may introduce appreciable error when I is large (Beterov et al 197 1). 
For small gas densities self-focusing of the field is not of importance, and the radial 
average must be formed only when investigating the temporal development of the mode. 
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According to Salomaa and Stenholm (1973) the fact that non-saturated absorption 
is able to keep most cavity modes below threshold, is primarily responsible for the 
preferred single-mode operation. At the oscillating mode the absorption is heavily 
bleached away causing minor power losses only. The stability of the single-mode 
operation is investigated by evaluating the small-signal gain functions of the non- 
oscillating modes. Including the noise source, we find for a weak mode, I ,  say, from (9) 

where the small-signal gain G , ( l , ,  I, = 0) is given by Salomaa and Stenholm (1973), 
and because the two modes have different eigenfrequencies the fluctuation force S, (T)  is 
uncorrelated with the fluctuation force of mode 1. If G, < 0 for some value of I , ,  the 
state (I , , I, N 0) is metastable and the larger - G,/D is the longer the lifetime (cf 0 4.1). 
We must also remember that I , is a random variable, but since its fluctuations are slow 
compared to t,(z), the time dependence of I ,  can be taken into account in a similar 
fashion to the elimination of the intensity in the phase equation (see equation (14)). 

In an initial situation when all the modes are below threshold, we put I, = 0 in 
(102). The fluctuations ofthe mode with largest small-signal gain, I , say, are damped least, 
and it has the highest probability of beginning to oscillate (note that this statement is 
true only if D is constant in the whole region of interest ; as far as spontaneous emission is 
concerned this occurs in the Doppler limit). Using the terminology of phase transitions 
mode 1 is a relevant variable (for other analogies see Kazantsev and Surdutovich 1970). 
The other modes relax rapidly (in times - l/G,) to their equilibrium values, which are 
modulated by the slowly varying mode. A large fluctuation in I drives mode 1 into the 
region of positive gain and I rapidly reaches the value corresponding to the oscillating 
operating point. The increased intensity of the relevant mode further suppresses the 
small-signal gains of the other, non-oscillating, modes below threshold improving their 
stability (usually G(0,O) < G(I 0)). 

If the escape probabilities of non-oscillating modes are almost equal, whichever 
mode may begin to oscillate. The stability of single-mode operation is still determined 
by the small signal gains of the modes that remain non-oscillating. With the aid of the 
results in 0 4.1 we can evaluate their lifetimes, as well as the lifetime of the oscillating 
mode, and judge whether these are long enough to satisfy the prefixed requirements. 
When only one mode is at the start above threshold the same considerations hold, except 
that the mode above threshold will almost certainly be the one that goes over to the 
oscillating state. For two or more modes initially above threshold the determination of 
the dynamics becomes very complicated. Even if we completely neglected the noise 
sources and gave non-vanishing initial values for the modes, we would need semi- 
classical solutions of general multi-mode operation to evaluate the gain functions of the 
modes involved in the competition. However, the final state stability considerations are 
made in a similar way to those of the simpler cases. A more quantitative analysis of the 
onset of oscillations in a multi-mode laser is outside the scope of this paper. 

Acknowledgments 

I wish to thank Professor V Amtegaokar and Dr R Graham for useful discussions. 
I am especially grateful to Dr S Stenholm for many invaluable comments and advice 
he has given. 



1114 R Salomaa 

Appendix 1 

If the field experiences constant damping G(1) = - Go,  equation (53) reduces to 

DIw; + (D + IGo)wL +(E,  + G ~ ) w ,  = 0. (A.1) 

Introducing the new variable 

we obtain from (A. 1) 

Zw;+(l +z)w:,+ 1 +l w, = 0, :A 
which has the solution 

w, = e-’L,(z). 

L,(z) is the nth order Laguerre polynomial and the nth eigenvalue E ,  is 

E ,  = Con n = 0 , 1 , 2  , . . . .  (A.5) 

The eigensolutions of (A.l) are thus 

Introducing (A.6) into (52) and choosing the initial distribution 

w(Z, 0) = h(1- Eo), 

we find 

(note that the solution of (52) with the special initial condition (A.7) yields the Green 
function, this fact is emphasized by writing $9 instead of w). Provided that we have 
Go > 0, the sum in (A.8) can be expressed in closed form (Bateman 1953, p 188), and we 
get 

GO Go(I + Eo e-Gor))lo( 
%(I, r ;  Eo. 0) = D(l -e-GoT) exp( - D(1 -e-GOr) 

where l o ( x )  is the modified Bessel function. In the limit t + CO the function I o  + 1, 
and we obtain the correct stationary distribution. For small r and E ,  > 0 the asymptotic 
expansion of l o ( x )  yields 

(A.lO) 

which can be shown to satisfy the initial condition (A.7). 
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In the vicinity of the unstable operating point I ,  we can linearize the drift coefficient 
G(I) I  and neglect the intensity dependence of the diffusion term. The Langevin equation 
(9) is then 

(A. 1 1) 

g, = G'UI) I l?  (A. 12) 

(the assumedly small term fD in equation (9) shifts the zero of the driving term by a small 
amount, but this shift will be neglected). A formal solution of (A.11) satisfying the initial 
value I(0) = Eo is given by 

I ( T ) - ~ ,  -(Eo-Il)eg" = & J ~ d ~ ' e x p [ g , ( ~ - ~ ' ) ] ~ ( r ' ) .  (A. 13) 

According to Chandrasekhar (1943) the probability distribution of I(T) is 

% ( I ,  T ; E o ,  0) 

provided that we have 

(A.14) 

(A. 15) 

The evidently unstable distribution (A.14) is applicable only for times g l r  << I .  

(A. l IHA.14) .  The result is given by (A.14), ifwe replace I ,  by I 2  in (A.12) and (A.14): 
A linearized solution near the stable operating point I = I 2  is obtained similarly to 

% ( I ,  7 ;  E , ,  0) 

where we have explicitly taken into account the sign of g2,  ie, 

g2 = - G ' ( I 2 ) Z 2 .  

The applicability of (A.16) again requires that (A.15) is satisfied. 
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